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abstract: Biotic homogenization, the loss of local biotic distinc-
tiveness among locations (beta diversity), is a form of global change
that can result from the widespread introduction of nonnative spe-
cies. Here, we model this process using only species’ occupancy
rates—the proportion of sites they occupy—without reference to
their spatial arrangement. The nonspatial model unifies many em-
pirical results and reliably explains 190% of the variance in species’
effects on beta diversity. It also provides new intuitions and prin-
ciples, including the conditions under which species’ appearance,
spread, or extirpation will homogenize or differentiate landscapes.
Specifically, the addition or spread of exotic species that are more
common than the native background rate (effective occupancy) ho-
mogenizes landscapes, while driving such species to extinction re-
gionally or introducing rarer species differentiates them. Given the
primacy of occupancy and our model’s ability to explain its role,
homogenization research can now focus on other factors.

Keywords: biotic homogenization, species invasions, beta diversity,
biotic similarity, approximation.

Introduction

The recent unprecedented interchange of organisms
among previously distinct biotas has eroded local biotic
distinctiveness (beta diversity) in an important form of
global change known as biotic homogenization (McKinney
and Lockwood 1999; Ricciardi 2007; McKinney 2008). Bi-
otic homogenization, or increases in the similarity of biotas
among locations, can occur in several ways (Olden and
Poff 2003; Olden and Rooney 2006), but one of the best
studied is when exotic species become established across
a region (e.g., McKinney 2004a; Leprieur et al. 2008). Be-
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cause diversity among communities reflects how local eco-
logical interactions translate into diversity at regional
scales, biotic homogenization can alter the structure, func-
tion, and biogeography of whole regions (Olden 2006;
Olden and Rooney 2006). In many systems, species ad-
ditions via biotic interchanges are more common than
species losses via extinction (Sax and Gaines 2008). Thus,
a general understanding of how exotic and invasive species
contribute to the homogeneity of landscapes is a critical
aspect of the study of conservation biogeography and
global change (Olden and Poff 2003; Smith et al. 2009).

Much of what is currently known about homogeniza-
tion is based on case studies, with limited theoretical ex-
ploration and few general principles (reviewed in McKin-
ney 2004a, 2008; Olden 2006; but see Olden and Poff
2003). In the absence of a theoretical framework, it has
been difficult to predict the effects of exotic species or to
explain why different taxa and landscapes show homog-
enization versus differentiation (McKinney 2004a, 2008;
Rooney et al. 2007). In particular, few studies have ad-
dressed the need to distinguish the simple numerical effects
of species presence and occupancy per se from the effects
driven by novel species interactions, such as facilitation
and competition (reviewed in Olden and Rooney 2006;
but see Leprieur et al. 2008; Smith et al. 2009). The ability
to distinguish these two forms of homogenization (i.e.,
numerical effects of species presence and occupancy vs.
ecological effects) has been hindered in part by the com-
putational difficulty of performing millions of compari-
sons among sites across thousands of simulated landscapes
(e.g., Leprieur et al. 2008) and of analyzing them while
taking into account that the comparisons are not statis-
tically independent (Olden et al. 2008).

Here, we attempt to address these limitations by de-
veloping a nonspatial analytical approximation of mean
similarity and homogenization (as well as a free software
package for comparing the approximation with observed
results). This approximation makes it possible to accu-
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rately estimate biotic homogenization of nontrivial land-
scapes for the first time and can provide ecologists with
relevant parameters and summary statistics that will help
them focus on the most important aspects of those land-
scapes. We assessed the robustness of these estimates and
summaries by comparing approximate predictions with
observations from 47 real data sets and a range of sim-
ulated landscapes.

Importantly, the analytical approximation yields a model
that makes several intuitive and novel predictions about
homogenization. For instance, though it has long been un-
derstood that cosmopolitan species homogenize landscapes
while rare and endemic species differentiate them (McKin-
ney and Lockwood 1999; Rooney et al. 2007), the full re-
lationship between occupancy rates and similarity has not
been characterized. Our simplifying assumptions allow us
to do so, uniting previously disconnected observations and
hypotheses about homogenization into a single framework.

The Model

We begin with a widely used measure of compositional
similarity, Jaccard’s index (Magurrán 1988; Gotelli and
Ellison 2004). Jaccard’s index is calculated as the propor-
tion of species shared between site i and site j, that is,
Sij/Tij, where Sij is the number of species that occur in both
sites and Tij is the total number of unique species in the
two sites combined (fig. 1A). Jaccard’s index ranges from
0 (no species shared) to 1 (all species shared) and is some-
times preferred over other occupancy-based similarity
measures, such as Sørensen’s index, because its comple-
ment (dissimilarity) behaves more like Euclidean distance
(Gotelli and Ellison 2004). Approximations could also be
constructed for many other similarity indices (including
Sørensen’s) using similar methods, with broadly similar
results.

Jaccard’s index is a pairwise similarity measure, so when
the number of pairs is large, researchers often average these
pairwise similarities to obtain a single value for the land-
scape. We call this value (fig. 1B, 1C):J

SijJ p mean . (1)( )Tij

While calculating may require comparisons amongJ
thousands of pairs of sites, mean(Sij) and mean(Tij) can
each be calculated independently of species’ spatial ar-
rangement, based solely on how many sites they occupy
(app. A). We can then approximate the average ratio of
shared to total species ( ) as the ratio of their averagesJ
(Turelli et al. 1982). We call this approximation (fig.∗J
1B, 1C):

mean(S )ij∗J p
mean(T )ij

p n n (1 ! p )nk kp ! . (2)! !( ) [( ) ( )]Z2 2 2k k

Here, n is the number of sites in the landscape, pk is the
proportion of those sites occupied by species k, and the
notation

x( )2

denotes the number of different pairs that can be chosen
from a set of x items, . Note that unlike equationx(x ! 1)/2
(1), which averages across actual pairs of sites, equation
(2) has no information about species’ spatial arrangement.
This means that the approximation is blind to any effects
of spatial associations or dissociations among species on
mean similarity. If these associations are particularly
strong, substantial disagreement between the approxi-
mation and can result (fig. 1C; Chase 2007). Fortunately,J
the analyses in appendix B suggest that this disagreement
will typically be small.

To simplify further, we consolidate the pk terms in equa-
tion (2) into a shared, “effective” occupancy rate . In∗p
population genetics, effective population size is the num-
ber of individuals that would produce the observed pat-
terns of inbreeding or drift in an idealized population.
Likewise, we define the effective occupancy rate as the
value of pk that would produce the observed value of ∗J
in an idealized landscape where all species had the same
occupancy rate. After simplification, this yields

∗J (2n ! 1) " 1∗p p . (3)∗(J " 1)n

When species do not vary in their occupancy rates, is∗p
simply the occupancy rate that they share; otherwise, the
more common species play a disproportionate role in de-
termining because they appear in a greater number of∗p
pairwise comparisons.

Importantly, equations (2) and (3) are relatively insen-
sitive to the number of sites (n): with greater than 10 sites,

, and . These sim-∗ ∗ ∗ ∗ ∗ ∗n 1 10 J ≈ p /(2 ! p ) p ≈ 2J /(1 " J )
plifications provide the most basic relationships between
occupancy and similarity.

Equation (2) allows us to model how changes in oc-
cupancy affect mean similarity, simply by taking the dif-
ference in values. The parameter has a very important∗ ∗J p
role in these predictions (fig. 1D). If an exotic species’
occupancy in equation (2) is manipulated while all other
species’ occupancy rates are held constant, it can be shown
that the exotic species has a net differentiating effect (low-
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Figure 1: Calculation of observed and predicted biotic similarity based on Jaccard’s index. A, Single pair of sites, each with two species.
One species (b) of three total species (a–c) is shared, yielding a Jaccard similarity of 1/3. B, When there are multiple comparisons, their
similarity values can be averaged to find . Mean similarity can be approximated as from the species’ occupancy rates. C, Changing the∗J J
locations of species relative to B without changing their occupancy rates can change but not . The strong spatial association between∗J J
species a and species b and their dissociation from species c and d, combined with the small number of species on the landscape, prevent
a good fit between and . D, Predicted effects of exotic species with varying occupancy rates invading a landscape with . As∗ ∗J J p p 0.8
nonnative species’ occupancy increases, the effect on biotic similarity of each individual nonnative species changes from differentiation
(negative values) to homogenization (positive values). The intersection of the line with the horizontal axis is at , while the lowest point∗p
on the curve is at about half that value. E, With more native species (numbers near lines), individual exotic species have less of an effect
on . Richness does not affect the qualitative patterns, however (e.g., the locations of the critical points at and ).∗ ∗ ∗J p p /2

ers ) whenever its occupancy is less than and a net∗ ∗J p
homogenizing effect (raises ) whenever its occupancy∗J
exceeds that value. It can also be shown that the point
where differentiation is maximized converges to half of

. In other words, if we follow an exotic, biologically inert∗p
species (a weak invader sensu Ortega and Pearson 2005)
from the moment it first appears on a landscape until it
has spread to every site, it will start off too rare to sig-
nificantly alter similarity but will increasingly differentiate
the landscape as its occupancy increases until it reaches
about half the background occupancy rate of the other
species in the landscape. Further increases in occupancy

will reverse these changes, until occupancy exceeds and∗p
net homogenization begins. Though several authors have
intuited aspects of this relationship between occupancy
and similarity (e.g., McKinney 2004a; Rooney et al. 2007;
La Sorte et al. 2008), the full relationship has not been
formalized until now, and the critical values had not been
found.

Equation (2) also indicates that if native richness is high
relative to exotic richness, then similarity will depend pri-
marily on native occupancy rates because most compar-
isons will involve native species. We refer to this effect as
the native landscape’s “inertia.” Conversely, the greater the
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proportion of exotic species, the stronger their ability to
overcome this inertia and either increase or decrease mean
similarity, as shown in figure 1E. Changes in richness per
se, however, do not influence the other parameters dis-
cussed above, including or the threshold between ho-∗J
mogenization and differentiation. In other words, after
controlling for occupancy, richness does not affect the di-
rection of exotic species’ effects on , only the magnitude.∗J

Methods

Here, we compare the model predictions to observed J
values in both real and simulated landscapes using blender,
a free, open-source software package written by D. J. Harris
in R (ver. 2.11.1; R Development Core Team 2010). The
package can be downloaded from within R using the com-
mand install.packages(“blender”) or from the Compre-
hensive R Archive Network (http://cran.r-project.org/web/
packages/blender/index.html). For efficiency, some of
blender’s calculations rely on the vegan R package, which
is also available from CRAN (Oksanen et al. 2010).

It is important to note that blender calculates homog-
enization as the difference in mean similarity between the
full landscape and the landscape with exotic species re-
moved. Calculating homogenization this way is not ideal
because the full effect of exotic species cannot be assessed
without time series (Olden and Rooney 2006). However,
in part because time series data on species invasions are
rare, this method remains common (e.g., references in
Olden and Rooney 2006; Smith 2006; Castro and Jaksic
2008; Leprieur et al. 2008; Olden et al. 2008; but see Rahel
2000). Because ascribing particular colonization and ex-
tirpation events to a given biotic or abiotic factor such as
an invasive species is complex and outside the scope of
the model, we have chosen to follow this convention and
ignore any changes in the native community for these
analyses. We discuss the implications of this choice for
interpreting our results below.

Comparison with Data

We began by extracting county-level floristic inventories
of plants for the contiguous United States (excluding
Maryland) from the USDA PLANTS database (USDA,
NRCS 2010). Because of the scope of the database, sam-
pling is necessarily uneven across taxa, counties, and states,
so we do not necessarily expect the values we estimate for
individual states to be meaningful. Despite these limita-
tions, the database gives us a rare opportunity to assess
the model’s accuracy on 47 U.S. state landscapes of various
sizes, biogeographies, richnesses, and similarities, provid-
ing a wide-ranging examination of the approximation’s
robustness. Importantly, plant species in the database vary

in occupancy from !0.01 to 1, allowing us to explore how
occupancy affects the homogenizing or differentiating ef-
fect of nonnative species across the entire parameter space.
The portion of the PLANTS database that we used has
been included with blender.

Next, we used blender to assess the model’s ability to
predict native and changes in associated with the ad-J J
dition of entire exotic biotas and of individual exotic spe-
cies. From the individual species results, blender evaluated
the correspondence between the “true” critical values (es-
timated by smoothing the data with R’s loess function for
locally weighted regression) and those predicted by the
model (i.e., and ). The data for Delaware could not∗ ∗p p /2
be smoothed because of an insufficient range of exotic
occupancy rates, so critical values were not estimated for
that state. For each analysis, correspondence was calculated
as the proportion of the observed variance that could be
explained by the model (R2).

Simulations

Precisely identifying the causes of error introduced by our
approximation is difficult (Welsh et al. 1988), but the anal-
yses in appendix B suggest that richness plays a major role
in ameliorating it. We assessed this by comparing andJ

values calculated for landscapes based on the Colorado,∗J
Michigan, Minnesota, and Rhode Island native occupancy
matrices but with a range of reduced richness values. For
each of these landscapes, we performed the following steps.

For each power of 2 between 16 and the total number
of species in the original landscape, blender created 1,000
reduced-richness landscapes by randomly selecting subsets
of the species in the original landscape. Blender then cal-
culated and for each of these reduced landscapes, and∗J J
we found 95% confidence intervals of the discrepancies
between these two values for each level of simulated
richness.

The analyses in appendix B also indicated that tends∗J
to most closely approximate when species distributionsJ
are uncorrelated (see also fig. 1B, 1C). To verify this, we
took the simulated landscapes described above and re-
moved any such correlations by randomly reshuffling each
species’ locations in the landscape. This reshuffling held
species occupancy rates constant but allowed local richness
to vary among simulation runs; in Gotelli’s (2000) terms,
blender holds row sums fixed while columns are equi-
probable (SIM2). We concluded by finding 95% confi-
dence intervals for model error for each level of richness
in these reduced and reshuffled landscapes.

Because is not defined for pairs of landscapes that eachJ
have zero richness, simulated landscapes with empty sites
were discarded. Confidence intervals were calculated for
a given level of richness only if at least 100 reduced land-
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Figure 2: Predicted and observed changes in mean similarity for two of the best-fit states (A: Wisconsin, ; B: Maine,2 2R p 0.998 R p
) and two of the worst-fit states (C: Virginia, ; D: Iowa, ). Each point is a single pairwise comparison of average2 20.998 R p 0.915 R p 0.861

floristic similarity among counties, with a different exotic species added to the landscape for each point to produce a change in .J

scapes and their shuffled counterparts remained after this
step.

Together, these analyses allowed us to track the range of
model error across four landscapes as a function of richness
and of whether we retained landscape information beyond
occupancy that could interfere with our predictions.

Results and Discussion

Comparison with Data and Simulations

The model explained 99.8% of the variation in observed
mean similarity ( ) of native species across states as wellJ

as 99.4% of the differences in floristic similarity owing to
the inclusion of all nonnative species as a group. Changes
in mean similarity owing to the inclusion of individual
species followed the expected “scoop” shape almost exactly
when we added exotic species one at a time (mean

, ; fig. 2). In particular, the thresh-2R p 0.980 SD p 0.029
olds between homogenization and differentiation occurred
very close to ( ), and the minima occurred∗ 2p R p 0.995
very close to ( ). In other words, the∗ 2p /2 R p 0.980
model’s central qualitative predictions held in real land-
scapes: in general, the inclusion of individual nonnative
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Figure 3: 95% confidence intervals showing the range of disagreement between predicted and observed mean similarity for a subsample
of four states: Colorado (A), Michigan (B), Minnesota (C), and Rhode Island (D). The results bounded by solid lines include the nonrandom
associations between species that structured the landscapes, which increases the level of error relative to randomized landscapes’ results,
bounded by dashed lines.

species increases mean similarity if and only if they occupy
more sites than their native counterparts (as defined by

), while differentiation is maximized when exotic oc-∗p
cupancy is about half that value. These rules formalize
previous empirical observations, which stated only that
common species homogenize and rare ones differentiate

(Olden and Poff 2003; McKinney 2004a; Clavero and
Garcı́a-Berthou 2006; La Sorte and McKinney 2006; Roo-
ney et al. 2007; La Sorte et al. 2008).

As discussed in appendix B and by Turelli et al. (1982),
the approximation we used is most accurate when species
distributions are independent of one another and the
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number of species is greater than about 20. Our simula-
tions with randomly arranged species confirmed this result
(fig. 3, dashed lines). Adding the nonindependence among
species’ spatial distributions as found in real landscapes
substantially slowed convergence and added some system-
atic error (fig. 3, solid lines), but the fit was usually very
good even when richness was heavily reduced.

Integrating Model Predictions with Previous Results

The explanatory power of our model demonstrates the
central role for occupancy—and especially effective oc-
cupancy ( )—in understanding biotic distinctiveness and∗p
(nontemporal measures of) biotic homogenization. With

, an ecologist can quickly estimate average similarity or∗p
differences in similarity without the need for spatially ex-
plicit data or simulations. Importantly, also unites many∗p
previously disconnected results. For instance, why do older
invaders increase similarity more than recent ones (Cla-
vero and Garcı́a-Berthou 2006; Kühn and Klotz 2006; La
Sorte et al. 2007)? And why are local range expansions
associated with greater homogenization than invasions
from other continents (McKinney 2005; La Sorte and Mc-
Kinney 2006; Leprieur et al. 2008; Spear and Chown 2008)?
In both cases, the answer can be boiled down to occupancy.
Species that have had longer to spread or whose local
occupancy rates did not start at zero will have higher oc-
cupancy rates and are therefore more likely to contribute
to increased similarity.

The model also clarifies how a landscape’s richness-
based inertia operates during invasions, unifying several
additional previously observed patterns in homogenization
research. For instance, both the reduced homogenizing
effect of nonnative species in species-rich landscapes
(Olden and Rooney 2006) and the stronger effects ob-
served in opposite directions as nonnative richness in-
creases (McKinney 2004a, 2004b) are consistent with the
model’s prediction that, all else equal, the degree of ho-
mogenization or differentiation caused by exotic species
will increase with increasing exotic richness and decrease
with increasing native richness. Inertia also explains the
small size of the effects demonstrated in figure 2; a single
exotic species can do very little to overcome the inertia of
hundreds or thousands of native species. When multiple
exotic species were added simultaneously, the effects were
often orders of magnitude larger.

Our results differ substantially from those of Smith et
al. (2009), who used time series data and found large
discrepancies between observed patterns and those ex-
pected by changes in occupancy alone. The most impor-
tant reason we did not find such discrepancies in the USDA
PLANTS data is that our widely used method for calcu-
lating “changes” in similarity (i.e., simply comparing land-

scapes with and without exotic species) does not allow
exotic species to affect their native counterparts’ occu-
pancy rates, richness, or spatial distributions (reviewed in
Olden and Rooney 2006). For this reason, any attempt to
attribute ecological mechanisms to the results of static
studies of biotic homogenization such as ours should be
approached with caution.

Despite our focus on invasion biology, our model’s pre-
dictions could be adapted to other scenarios, including
extirpations such as those caused by emerging diseases
(Smith et al. 2009). For instance, our model predicts ho-
mogenization when species with occupancy less than ∗p
are extirpated and differentiation when common species’
ranges shrink. Even radical changes in species composition
across many sites could be modeled this way, if time series
data or predictions about future occupancy rates were
available.

Conclusion

By distilling the effects of nonnative species to a single
parameter—their occupancy rates—and by identifying key
thresholds, our model has allowed for the synthesis of
several empirical observations of the process of biotic ho-
mogenization. The fact that a nonspatial model can explain
so much variance in biotic similarity, as well as so many
previously documented qualitative patterns, suggests that
differences in mean similarity at regional scales are largely
mediated by species’ occupancy rates. Given that this re-
lationship is now characterized, homogenization research-
ers can increase their focus on three areas: processes that
determine which species spread and which species are ex-
tirpated (already of critical concern in other areas of com-
munity ecology); factors whose effect on similarity exceeds
that predicted by nonspatial models; and patterns in com-
munity similarity below the regional scale, which cannot
be detected by our model because of its exclusive focus
on landscape-level mean similarity.
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APPENDIX A

Deriving ∗J

Given a group of n sites, the number of site pairs is

n
,( )2

or . Thus, if pk is the proportion of n sites oc-n(n ! 1)/2
cupied by species k, then the number of ways a species
can appear twice (and thereby contribute to shared species
[Sij]) is

p nk( )2

out of the

n( )2

possible comparisons. Summing across all species yields
the average number of species shared in randomly chosen
pairs of sites:

p n nkmean(S ) p . (A1)!ij ( ) ( )Z2 2k

The full distribution of Sij for individual site pairs is de-
scribed by Connor and Simberloff (1978) and Raup and
Crick (1979). Species contribute to total species (Tij) when-
ever they are not absent from both sites, or in

n (1 ! p )nk!( ) ( )2 2

out of the

n( )2

possible comparisons. Summing across all species yields

n (1 ! p )n nkmean(T ) p ! . (A2)!ij [( ) ( )] ( )Z2 2 2k

Dividing mean(Sij) by mean(Tij) yields equation (2).

APPENDIX B

Quantifying Model Error

According to Welsh et al. (1988), the full relationship be-
tween and is given by∗J J

Cov (T , S /T )ij ij ij∗J p J ! . (B1)
mean(T )ij

Here, covariance should not be corrected for sample size
because all possible pairs of sites are sampled. Unfortu-
nately, as Welsh et al. (1988) acknowledge, the covariance
term is always difficult to interpret, and homogenization
researchers face the additional difficulty that Sij and Tij are
aggregate properties of site pairs rather than of individual
sites, which makes interpretation even harder. Still, we can
draw some tentative conclusions.

First, the strong law of large numbers ensures that under
a broad range of conditions, landscapes with greater av-
erage richness—specifically, greater values of mean(Tij)—
will have better agreement between and (Turelli et al.∗J J
1982). Effectively, as the number of species increases, the
effect of idiosyncrasies in their spatial positions decreases
via averaging.

Second, this averaging effect works best when species
distributions are independent. Specifically, when sites dif-
fer systematically along a few powerful niche axes (e.g., if
species composition is largely determined by whether a
specific habitat type is present), will strongly overesti-∗J
mate (e.g., Chase 2007). The reason is that two sites ofJ
the same type will have the same sets of species (high
similarity, low mean(Tij)), while comparisons across types
will have different sets of species (low similarity, high
mean(Tij)). This negative correlation makes the covariance
term in equation (B1) positive and pushes up relative toJ

. This is the source of the large discrepancy between the∗J
two similarity measures in figure 1C. The more factors
there are affecting community composition, however, and
the more species there are to average across, the weaker
this effect becomes and the better the approximation
performs.
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